
Network Structure and Measures 

After having discussed the basic building blocks of networks in detail, let us now deal with ways 

to capture and describe the structure of networks. The following measures are available for these 

tasks: 

 Connectivity (Beta-Index) 

 Diameter of a graph 

 Accessibility of nodes and places 

 Centrality / location in the network 

 Hierarchies in trees 

For most of these measures we will present one unweighted and one weighted (metric) case. 

Connectivity (Beta index) 

The simplest measure of the degree of connectivity of a graph is given by the Beta index (β). It 

measures the density of connections and is defined as: 

 

 

where E is the total number of edges and V is the total number of vertices in the network. 

 

In the figure above, the number of vertices remains constant in A, B, C and D, while the number 

of connecting edges is progressively increased from four to ten (until the graph is complete). As 

the number of edges increases, the connectivity between the vertices rises and the Beta index 

changes progressively from 0.8 to 2. Values for the index start at zero and are open-ended, with 

values below one indicating trees and disconnected graphs (A), and values of one indicating a 

network which has only one circuit (B). Thus, the larger the index, the higher the density. With 

the help of this index, regional disparities can be described, for example. In the figure below, the 

railway networks of selected countries are compared to general economic development (using the 

energy consumption-index of the 1960s). Energy consumption is plotted on the y-axis and the Beta 

index on the x-axis. Where connectivity is high, the economic development is high as well 



 

Diameter of a graph 

Another measure for the structure of a graph is its diameter. Diameter δ is an index measuring the 

topological length or extent of a graph by counting the number of edges in the shortest path 

between the most distant vertices. It is: 

 

where s(i, j) is the number of edges in the shortest path from vertex i to vertex j. With this formula, 

first, all the shortest paths between all the vertices are searched; then, the longest path is chosen. 

This measure therefore describes the longest shortest path between two random vertices of a graph. 

 

 



The first two figures in graph A show possible paths but not the shortest paths. The third figure 

and figure B show the longest shortest path. 

 

In addition to the purely topological application, actual track lengths or any other weight (e.g. 

travel time) can be assigned to the edges. This suggests a more complex measurement based on 

the metric of the network. The resulting index is π = mT/mδ, where mT is the total mileage of the 

network and mδ is the total mileage of the network's diameter. The higher π is, the denser the 

network. 

Accessibility of vertices and places  

A frequent type of analysis in transport networks is the investigation of the accessibility of certain 

traffic nodes and the developed areas around them. A measure of accessibility can be determined 

by the method shown in the animation. The accessibility of a vertex i is calculated by: 

 

where v = the number of vertices in the network and n (i, j) = the shortest node distance (i.e. 

number of nodes along a path) between vertex i and vertex j. Therefore, for each node i the sum 

of all the shortest node distances n(i, j) are calculated, which can efficiently be done with a matrix. 

The node distance between two nodes i and j is the number of intermediate nodes. For every node 

the sum is formed. The higher the sum (node A), the lower the accessibility and the lower the sum 

(node C), the better the accessibility. The importance of the node distance lies in the fact that nodes 



may also be transfer stations, transfer points for goods, or subway stations. Therefore, a large node 

distance hinders travel through the network. 

As with the diameter of a network, a weighted edge distance can also be used along with the pure 

topological node distance. Examples of possible weighting factors are: distance in miles or travel 

time as well as transportation cost. For this weighted measure, however, the edge distance is used 

and not the node distance. 

 

where e is the number of edges and s(i, j) the shortest weighted path between two nodes. 

Centrality / Location in the network 

The first measure of centrality was developed by König in 1936 and is called the König numberKi. 

Let s(i, j) denote the number of edges in the shortest path from vertex i to vertex j. Then the König 

number for vertex i is defined as: 

 

where s(i, j) is the shortest edge distance between vertex i and vertex j. Therefore, Ki is the longest 

shortest path originating from vertex i. It is a measure of topological distance in terms of edges 

and suggests that vertices with a low König numbers occupy a central place in the network. 

 

Hierarchies in trees 

In quantitative geomorphology, more specificall in the field of fluvial morphology, different 

methods for structuring and order of hierarchical stream networks have been developed. Thus, 

different networks can be compared with each other (e.g. due to the highest occurence order or the 

relative frequencies of the unique levels), and sub-catchments can be segregated easily. Of the four 

ordering schemes in the following figure, only three are topologically defined. The Horton scheme 

is the only one that takes the metric component into account as well. 

Calculating the strahler number, we start with the outermost branches of the tree. The ordering 

value of 1 is assigned to those segments of the stream. When two streams with the same order 

come together, they form a stream with their order value plus one. 

 


